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SUMMARY

This paper shows that the well-known variational acceleration method described by Wachspress (E.
Wachspress, Iterati6e Solution of Elliptic Systems and Applications to the Neutron Diffusion Equations of
Reactor Physics, Prentice-Hall, Englewood Cliffs, NJ, 1966) and later generalized to multilevels (known
as the additive correction multigrid method (B.R Huthchinson and G.D. Raithby, Numer. Heat Transf.,
9, 511–537 (1986))) is similar to the FAC method of McCormick and Thomas (S.F McCormick and J.W.
Thomas, Math. Comput., 46, 439–456 (1986)) and related multilevel methods. The performance of the
method is demonstrated for some simple model problems using local refinement and suggestions for
improving the performance of the method are given. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: variational acceleration method; composite grids; local refinement

1. INTRODUCTION

Many problems in the field of numerical partial differential equations exhibit solution behavior
that requires more resolution in one area of the domain than in others. Many traditional
techniques utilize a fine mesh covering the whole domain in order to resolve these fine local
details. However, using a uniform global fine grid to resolve the local details often becomes too
expensive, even for the largest computers. For these problems, some sort of local mesh
refinement scheme becomes essential. Two different approaches, fixed local refinement and
dynamic local refinement, are often distinguished. Dynamic and adaptive grid refinement used
to follow moving fluid interfaces often requires complex data structures.

Fixed local grid refinement alone is used in this work. A typical example of a fixed localized
phenomenon in reservoir simulation which requires special treatment is flow in the neighbor-
hood of wells. Because of the rapidly changing behavior of the pressure in the vicinity of the
wells, accurate pressure approximations require some type of local refinement. A regular local
grid refinement scheme is used, in the sense that each grid cell in a certain subdomain is
subdivided into a number of rectangular cells. Fixed and dynamic refinement techniques have
been used in the reservoir context. Von Rosenberg used a finite difference refinement scheme
based upon Taylor-series expansions for the constant coefficient problem [1]. Quandalle and
Besset [2] discussed local refinement with local time stepping for reservoir applications.
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Schmidt and Jacobs used a local refinement multigrid scheme to solve for an IMPES pressure
equation [3]. Pedroza and Aziz [4] used a radial grid in local refinement around wells. Other
examples of the use of local refinement schemes used in this context are given in References
[5,6]. Most approaches used a global numbering of the nodes, which destroys the nice banded
structure of regular grids. This paper describes an iterative technique that allows us, in some
sense, to decouple the refined patches and the underlying global coarse grid; the coupling is
through the internal boundary between coarse and refined regions. The technique used is a
generalization of the well-known additive correction methods or variational acceleration
techniques described in the book by Wachspress [7] and the additive correction method (ACM)
in Reference [8]. The description of the method in conjunction with local refinement was
proposed by Fladmark [9] and is similar to the fast adaptive composite grid (FAC) procedure
of McCormick and Thomas [10].

In the context of uniform grids, the method was shown to be identical to a cell-centered
multigrid algorithm using both restriction and prolongation operators based on piecewise
constant interpolation [11,12]. In a later paper by Gjesdal [13] the same connection between
ACMs and cell-centered multigrid methods was shown. Careful treatment of the finite
difference stars near composite grid interfaces is important [14,15,2]. For illustration purposes,
the discretization is given for both for a regular uniform grid and a non-uniform composite
grid arising from the use of a locally refined grid. The efficient solution of the composite grid
problem using the variational acceleration technique proposed in Reference [9] is presented.
The connection between the method used here and the well-known FAC method proposed by
McCormick and Thomas [10] and other multilevel methods [16] is shown. Some issues related
to the construction of coarse grid matrices with the ACM method [17] are also discussed.

Finally, numerical experiments involving a simple model problem where an analytical
expression for the solution is available and simulations involving more realistic reservoir
conditions are presented and suggestions for improvement of the method is given.

2. DISCRETIZATION OF A SIMPLE MODEL PROBLEM

The conservative discretization is now discussed using the simplified pressure equation as a
model problem:

9 · (l9P)= −QT+fcT

(P
(t

. (1)

This equation is a simplified version of the parabolic pressure equation that stems from an
IMPES formulation widely used in reservoir simulation studies [18]. P denotes an average
pressure, cT=coSo+cwSw where ca (a=o, w) is the compressibility term and QT denotes total
source terms, l=lo+lw denotes total transmissibility terms. Furthermore,

la=
K ·kra

ma

, a=o, w, (2)

where K is the absolute permeability, kra is the relative permeability of phase a, and ma is the
viscosity. The saturation Sa (a=o, w) is the fraction of the space available for flow occupied
by the oil or water phase, thus So+Sw=1. In the following discussion, additional incompress-
ibility is assumed, i.e. cT=0. The starting point of the discretization is not the differential
Equation (1) but the primary balance equation.

Integrating the equation over a finite volume V¦V (area in 2D) gives
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−
&

V

9 · (l9P) dV=
&

V

QT dV. (3)

Applying Gauss’ divergence theorem, the volume integral on the left-hand-side is transformed
into a surface integral (line integral in 2D), yielding

−
&

G
(l9P) ·n� dG=

&
V

QT dV, (4)

where n� is the outward unit normal defined on G. Each side represents a flow rate in mass per
unit time, and the term (l9P) · n� represents a flux across G. The equation can thus be
interpreted as a conservation law for the volume V, which states that the net flow rate across
the surface G balances with the net flow rate from interior sources. Flux conservation is
important because it is well-known that conservation can be critical to the computation of the
correct solution for many problems [19].

2.1. Discretization at regular points

For the cell-centered grid depicted in Figure 2, the surfaces of the boundary control volumes
coincide with the boundary of the computational domain, so that a Neumann boundary
condition is easily incorporated into the equations and conservation for the entire domain is
therefore assured. An additional advantage of cell-centered grids when using multigrid
methods is that the boundary of the control volumes on the fine grid (or patch) coincide with
those of the coarse grids. For each cell e(x, y) in our computational region the problem has
been transformed into one of computing fluxes leaving or entering each cell. For the
compressible case, i.e. when cT"0, the discretization of the time dependent terms consists of
replacing those partial derivatives by finite differences.

Let

Fx= −l
(P
(x

, Fy= −l
(P
(y

, (5)

denote the fluxes, in the x- and y-directions, respectively.
If e(x, y) is the cell shown in Figure 1 then the surface (line-) integral can be written as&

G
F ·n� dG=

&
E

Fx dG−
&

W

Fx dG+
&

N

Fy dG−
&

S

Fy dG. (6)

Since l\0, we can write

Figure 1. A grid cell; flux notation.
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Figure 2. Cells with block sizes and numbering of points.

(P
(x

= −
Fx

l
.

Integrating along the segment xi�xi+1 (see Figure 2),

Pi+1, j−Pi, j= −
& xi+1

xi

Fx
+(x, yj)
l(x, yj)

dx. (7)

Assuming that the flux does not vary much along the segment, the following approximation
can be deduced for Fx(xi, yj) at the east boundary:

Pi+1, j−Pi, j= −Fxi+1/2, j

& xi+1

xi

dx
l(x, yj)

. (8)

This gives&
E

Fx dG=DyFxi+1/2, j
= −

Dy
Dx

Pi+1, j−Pi, j

1/Dx
& xi+1

xi

(dx/l(x, yj))
. (9)

There are similar approximate relations for the other fluxes at the north, west and south
boundaries of the cell. li+1/2,j is defined as

li+1/2, j=
� 1
Dx

& xi+1

xi

dx
l(x, yj)

�−1

. (10)

In the case where l is constant within a cell, we obtain

li+1/2, j=
2li, j ·li+1, j

(li, j+li+1, j)
, (11)

i.e. the usual harmonic average. If the same procedure is applied to all the line integrals in
Equation (6), the discrete ‘pressure’ equation is obtained:

−
Dy
Dx

li+1/2, j(Pi+1, j−Pi, j)−
Dy
Dx

li−1/2, j(Pi−1, j−Pij)−
Dx
Dy

li, j+1/2(Pi, j+1−Pi, j)

−
Dx
Dy

li, j−1/2(Pi, j−1−Pi, j)= fi, j, (12)
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where fi,j is the discrete form of the term&
V

QT dV. (13)

For the case of rectangular cells on a non-uniform mesh, the flux term Fxi+1/2,j
is

Fxi+1/2, j
= −

2Dyj

Dxi+Dxi+1

li+1/2, j(Pi+1, j−Pi, j),

li+1/2, j=
� 2
Dxi+Dxi+1

& xi+1

xi

dx
l(x, yj)

�−1

.

Similarly, for the other flux terms this gives the case where l is constant within a cell:

li+1/2, j=
2li, j ·li+1, j

(li, jDxi+1+li+1, jDxi)
Dxi+1/2, j, (14)

where

Dxi+1/2, j=
1
2

(Dxi+Dxi+1). (15)

2.2. Discretization at irregular points

This section describes the conservative discretization in the case of a grid with locally refined
patches. An example of a grid with locally refined patches is given in Figure 3. Consider the
case of the irregular cell centered at (i1, j1) as shown in Figure 4. The two nodes marked x in
this figure are fictitious points and are only used to facilitate the computation of the couplings
across irregular interfaces. The approximation at the irregular points requires the finite
difference scheme to conserve mass. This translates into a condition of conservation of fluxes.
The case of Figure 4 requires that

Figure 3. A composite grid.
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Figure 4. Finite difference cells near a local mesh boundary.&
AC

Fx
+(xi, yj) dG=

&
AB

Fx
− dG+

&
BC

Fx
− dG. (16)

For the first term on the right-hand-side of Equation (16) we have&
AB

−l
(P
(x

dy=
Dy
2

1
Dx

Pi 1, j 2
−Pi 2, j 2

1/Dx
& xi 2

xi 1

dx/l(x, yj 2
)
. (17)

Similarly,&
BC

−l
(P
(x

dy=
Dy
2

1
Dx

Pi 1, j 2+1−Pi 2, j 2+1

1/Dx
& xi 2

xi 1

dx/l(x, yj 2+1)
. (18)

In the case of constant interpolation considered here, it is assumed that the pressure at the
fictitious points (i1, j2) and (i1, j2+1) is the same as at (i1, j1), so that Pi 1,j 2

=Pi 1,j 1
and

Pi 1,j 2+1=Pi 1,j 1
in Equation (17). Note that for this simple approximation, the system of linear

equations will remain symmetric if the system of linear equations corresponding to a regular
grid itself is symmetric. The convergence properties of the finite difference system are quite
poor. Ewing, et al. [14] showed that the rate of convergence in the discrete energy norm of this
scheme is O(h l/2), h being the mesh size. A better approximation would be to use linear
interpolation between coarse grid pressure values. For example the values of P at the fictitious
points (i1, j2) and (i1, j2+1) are

Pi 1, j 2+1=
1
4

Pi 1, j 1+1+
3
4

Pi 1, j 1
, (19)

Pi 1, j 2
=

1
4

Pi 1, j 1−1+
3
4

Pi 1, j 1
. (20)

Note that using linear interpolation as we do here gives rise to a non-symmetric matrix.
Forsyth and Sammon [5] showed that the approximation using constant interpolation lead

to a truncation error O(h−1). However, in the discrete energy norm the difference scheme has
O(h1/2) accuracy. For the case of linear interpolation the finite difference scheme has an

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 945–960 (1998)
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accuracy O(h3/2) [14]. The low order of convergence of the simplest difference scheme (case of
constant interpolation), is due to its poor approximation properties at the irregular points.

In the fully implicit case the derivation of the equations at the irregular interfaces is
completely analogous to the derivation above for the simple model problem (1). In computing
the transmissibilities, both pressure and saturation must be evaluated at the new time level
n+1, (since in the general case transmissibilities are functions of saturation and pressure). The
discrete transmissibility across the regular face is given by

Tx
+(i, j)=

Dyj

Dxi+1/2

�krb
m

�
i+1/2, j

·Ki+1/2, j, (21)

where Ki+1/2,j is given by an expression similar to Equation (11). Similarly,

Ty
+(i, j)=

Dxi

Dyj+1/2

�krb
m

�
i, j+1/2

·Ki, j+1/2, (22)

with similar expressions for Tx
−(i, j) and Ty

−(i, j). At the irregular face AC (see Figure 4) we
have a similar formula to Equations (17) and (18) for the fluxes&

AB

Fx
+ dy= (Pi 1, j 2

−Pi 2, j 2
)Tx

−(i2, j2), (23)

&
BC

Fx
+ dy= (Pi 1, j 2+1−Pi 2, j 2+1)Tx

−(i2, j2+1), (24)

where the transmissibilities now involves the use of the absolute permeability for irregular
grids, as given by Equation (14). Therefore, in computing the terms (krb/m)i+1/2,j, etc. it is
useful to interpolate pressure and saturation to the fictitious points (i1, j2) and (i1, j2+1), so
that the same routines can be used in these computations as for the regular interfaces.

3. EFFECTIVE SOLUTION OF THE COMPOSITE GRID EQUATIONS

Consider the composite grid problem

Ax� =y� . (25)

A is the composite grid matrix and x� and y� are the composite grid solution and right-hand-
side, respectively. We partition the nodes of the composite grid V into two disjoint sets, as in
the previous section. VF consists of those grid points in the refined region and VC consists of
the grid points in the non-refined region. V0 denotes the computational region when there is no
refinement, i.e. a uniform coarse region. V0 is partitioned in an analogous manner. V0 F contains
the coarse grid points underlying the fine patch, and V0 C=VC. Partition the composite matrix
A according to the partition of the domain:�ACC

AFC

ACF

AFF

n�x� c

x� f

n
=
�y� c

y� f

n
, (26)

where x� c denotes the composite solution in the coarse region, dim Nc and x� f denotes the
composite solution in the refined region, dim Nf. A similar partition for the matrix correspond-
ing to V0 , is�A0 CC

A0 FC

A0 CF

A0 FF

n�x̃� c

x̃� f

n
=
�ỹ� c

ỹ� f

n
. (27)
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The number of added coarse nodes that are now underlying the fine patch is Nfc. An algorithm
is presented for solving the composite grid problem (26) that was proposed by Fladmark [9],
defining

N0 =Nc+Nfc.

Let

Mi0 ={fine cells within coarse cell number i0 }, i0 =1, 2, …, N0 .

Ca i0 denotes a vector of order N=Nf+Nc consisting of only zero-elements, except for unit
elements at all i�Mi0 , (i0 =1, 2, …, N0 ). Let x� (k) be the kth iterate of x� . Choose a test function:

z� = %
N0

i0 =1

x̃i0 ·Ca i0 +x� (k)=
�z� c

z� f

n
, z�RN, (28)

where x̃i0 is the i0 th component of x̃� �RN0 .
Using z� as a test function in a Galerkin method, for each coarse cell j0 the following equation

should be satisfied:

�Ca j0 , Az� �=�Ca j0 , y� �, j0 =1, 2, … N0 , (29)

or

A0 x̃� = ỹ� , (30)

where A0 = (ãi0 ,j0 ) is given by

ãi0 ,j0 = %
i�Mi0

%
j�Mj0

ai, j, (31)

ỹi0 = %
i�Mi0

�
yi− %

N

j=1

ai, j ·xj(k)
�

. (32)

The solution to Equation (30) yields the value of the test function z� from Equation (28).
We now choose

x� c(k+1)=z� c. (33)

The (k+1)th iterate of x� f is computed from

AFFx� f(k+1)= −AFCx� c(k+1)+y� f. (34)

Therefore,

x� (k+1)=
�x� c(k+1)

x� f(k+1)
n

. (35)

The iteration proceeds by returning to Equation (28).
This algorithm will now be described in a slightly different form and equivalence to the FAC

procedure of McCormick and Thomas [10] is shown. Equation (28) is equivalent to

z� =x� +Px̃� , (36)

where P is a prolongation operator (constant interpolation with our choice of Ci0 ) that maps
coarse grid functions in V0 to composite grid functions in V, i.e.

P · x̃� =� I · x̃� C

PC
F · x̃� F

n
. (37)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 945–960 (1998)
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Equation (29) is now equivalent to

R ° A · (x� +P · x̃� )=R ·y� , (38)

or

R ° A ° P · x̃� =R ·y� −R ° A· x� , (39)

where R is a restriction operator that maps composite grid functions in V to coarse grid
functions in V0 . Our coarse grid operator has been constructed using a procedure analogous to
the Galerkin procedure described in Reference [20]. Defining the coarse grid operator as

A=R °A ° P, (40)

gives the coarse grid defect equation

A · x̃� =R ° (y� −A ·x� ). (41)

The right-hand-side is the restriction of the composite grid residual to the coarse grid V0 .
The algorithm can now be summarized in the following steps:

Algorithm 3.1
Step 1: Solve for x̃� from Equation (41).

x̃� =A−1(R · (y� −Ax� )).

Step 2: Having solved for x̃� , interpolate the correction to the composite grid and defect correct
the composite solution x� , so that

z� =x� +Px̃� .

Step 3: Solve the fine grid problem:

AFFx� f(k+1)= −AFCx� c(k+1)+y� f.

This completes one step of the algorithm.
The algorithm proceeds until the composite residuals have converged to some tolerance e. In

Step 1, the coarse grid is solved as if there were no fine patch. After the first cycle, the
right-hand-side of Step 1 is the composite residual that makes a correction to the most recent
approximation to the composite grid solution. Step 3 solves the fine patch using the previous
approximation for the coarse and interface solution. This algorithm is completely analogous to
the algorithm described by McCormick and Thomas in Reference [10], pp. 444. This is referred
to as the two-level exact solver cycle of FAC. This implies that the ‘corrections’ from the
underlying coarse patch are zero, since we are solving exactly on the refined regions as well as
for the uniform coarse grid problem. The FAC algorithm attempts to solve the composite grid
problem (25) by way of uniformly rectangular discrete equations. Information is passed
through the internal boundary between coarse and refined regions. Therefore, the method can
be seen as a domain decomposition method. FAC can be interpreted as a Schwarz-like domain
decomposition method in terms of subdomains VF and VC. Solving in Step 1 and Step 3 is not
restricted to using exact solvers. For the approximate FAC algorithm where e.g. a couple of
steps of a suitable relaxation method are used, defect corrections from coarse grids underlying
fine grid patches and restriction of residuals from patch to coarse grid are required. Liu [21]
used a V(2, 1) MG cycle as an approximate solver.

Note that the FAC procedure is ‘relatively easy’ to implement into existing simulators,
because the existing highly efficient solvers can be used for the regular grids. Routines that

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 945–960 (1998)
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compute composite residuals, modify transmissibilities at irregular interfaces and interpolation
routines are needed in order to patch the FAC algorithm into existing simulators.

Note that the band structure and corresponding efficiency are lost when the composite grid
equations are solved explicitly for the ordering of given unknowns. The FAC method has the
attribute that it is suitable for vectorization and adds important parallel capabilities. Note that
the solution of the systems on the patches on the same level can be done on different
processors.

4. A NOTE ON THE ACM METHOD FOR UNIFORM GRIDS

On uniform grids, the ACM method [17] and the Galerkin technique described in the previous
section are equivalent when using both restriction and prolongation operators based on
piecewise constant interpolation. In the context of the variational formulation, this corre-
sponds to using a Galerkin approach where basis and test functions are equal. The Galerkin
technique was first applied as an acceleration method by Wachspress in 1962 [7] for accelera-
tion of the iterative solution of linear equations in nuclear reactor calculations.

Consider the linear system

Ax� =y� . (42)

Let Mi0 denote the set of fine cells that are defined in the weighted sum for the restriction
operation centered on coarse cell i0 .

Referring to Figure 5, the coarse grid cell (i, j ) is made up by the 2×2 fine grid cells
(2i−1, 2j−1), (2i, 2j−1), (2i−1, 2j ) and (2i, 2j ). Let x� (k) denote the solution vector at
iteration k. Following the same derivation as in Equations (28)–(32) the coarse grid system to
solve is

A0 x̃� = ỹ� , (43)

or elementwise as

ãi0 ,j0 = %
i�Mi0

%
j�Mj0

ai, j, (44)

and

ỹi0 = %
i�Mi0

ri, (45)

Figure 5. The subdivision of a coarse grid cell into four fine cells.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 945–960 (1998)
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where ri denotes the fine grid residual. Using the subdivision of cells as in Figure 5 it is
straightforward to show the correspondence between the Galerkin approach and the ACM
method of Hutchinson and Raithby, see e.g. Reference [12]. Conservation properties of the
Galerkin approximation were shown in References [22,12]. In order to ensure multigrid
convergence, i.e. for the rate of convergence to be independent of the grid size, the restriction
and prolongation operators must satisfy the accuracy requirement:

mP+mR\M, (46)

where M is the order of the differential operator and mP and mR are the order of the restriction
and prolongation operator, respectively [23]. This requirement holds for elliptic operators, but
the condition given by Equation (46) does not hold for non-elliptic and singular perturbation
problems [24]. Yavneh [24] found that the corresponding conclusion for Galerkin coarsening
is that non-elliptic operators require larger orders of the prolongation and restriction operators
than the rule given by Equation (46).

Now, considering the usual discretization of the Laplace operator in one dimension, we have
in stencil notation for the fine grid matrix (see e.g. Reference [20])

Ah [−1 2 −1], (47)

and

A2h=
1
2

Ah, (48)

using a direct discretization of the Laplace operator on the coarse grid (labeled 2h). Using a
low-order Galerkin approximation, as in the ACM method [17], gives

A2h=Ah (49)

(similar results applies to the two- and three-dimensional Laplace operator). Standard multi-
grid with a discretized coarse grid operator, linear prolongation and constant restriction yields
grid-independent convergence rates for the Laplace operator [23,20]. Studying the ACM
method and the coarse grid operator given by Equation (49) reveals that it is the same as the
fine grid operator (no scaling). Unless we are solving for a problem with pure Neumann
boundary conditions, the ACM method yields an error component of low-frequency on the
fine grid. This will in turn deteriorate the convergence rate. In Reference [13] it was suggested
that the ACM approach can offer improved convergence rates for diffusion dominated
problems, by choosing a more accurate restriction and prolongation operator. This is not
entirely correct, because the coarse grid operator must be consistent with a discretized operator
on the coarse grid.

In Reference [13] it was stated that the ‘FLUX’ scheme of Ersland and Teigland [22]
corresponds to a low-order Galerkin operator. This is not entirely correct. The ‘FLUX’ scheme
corresponds to a consistently scaled low-order RAP operator (Galerkin) that treats diffusive
fluxes correctly, and thus reconstructs the exact discretization on coarse grids. The method in
Reference [22] is equivalent to the coarse grid operators presented in References [25,26].

5. NUMERICAL EXPERIMENTS FOR PROBLEMS WITH LOCAL REFINEMENT

In this section, some numerical computations for the model problem given below are
presented. The convergence rates varying the ratio of coarse to fine grid, and the interpolation
scheme are studied. The stopping criteria for the FAC iterations is given by

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 945–960 (1998)
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Figure 6. Repeated five-spot well pattern with diagonal and parallel grids.

rT · rBe, (50)

where e=10−10 and r is the composite grid residual at the current iteration step. The average
reduction factor reported is given by

r=
�D
D0

�1/iter

, (51)

where D0 is the norm of the initial residual, D is the norm of the last residual, and iter is the
number of iterations required to achieve the desired accuracy e. In order to study the accuracy
of the scheme the following error estimator is considered:

e0=
! %

(x,y)�V
h2(p(x, y)− p̃(x, y))2"1/2

,

where p(x, y) and p̃(x, y) denotes the exact solution and computed solution respectively.

5.1. Test case I

The problem considered here is the well-known repeated five-spot well pattern, see e.g.
Reference [27] for a detailed description and derivation of the solution. In the quarter five-spot
problem a square domain in the horizontal plane is considered, with injection and production
wells at opposite corners along one of the diagonals (see Figure 6).

By summing up the contributions from an infinite pattern of injectors and producers of
uniform strength, a solution of the Poisson equation is obtained away from the well locations:

p(x, y)=
1

4p
%
�

m= −�
(−1)�m� ln

!cosh(p/2 (x+y−2m))+cos(p/2(x−y))
cosh(p/2(x+y−2m))−cos(p/2(x−y))

"
. (52)

In the reference system chosen, the producers are located at the points (x=2i+1, y=2j+1)
and the injectors at (x=2i, y=2j ), where i, j�Z. The factor 1/4p corresponds to sources of
unit strength. Each term in the above sum represents the contributions from the wells along the
line x+y=2m, m�Z. The summation of Equation (52) must be performed numerically.

The solution obtained from Equation (52) can then be compared with numerical computa-
tions. For the diagonal grid of Figure 6, fluid of unit viscosity is injected into a reservoir
of constant thickness and unit permeability with an injection well at (0, 0) and a production
well at (1, 1). Note that the two different grids of Figure 6 provide the possibility to check
the discretization for grid orientation effects. Severe grid orientation effects occur with
the conventional five-point cell-centered grid. The computational region is V= [0, 1]2.
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The diagonal grid of Figure 6 was used and rectangular refinement was introduced in the
vicinity of each well, i.e. in the lower left and upper right corner of V. The areas to be
refined were fixed so that the total rectangularly refined domain is

VRW= [0, 1/4]2+ [3/4, 1]2. (53)

For the purpose of studying accuracy and convergence on the refined patches, consider the
modified domain

VRWmod
=VRW= [0, 1/8]2− [7/8, 1]2, (54)

i.e. excluding a fixed area around the singularities (wells).
In test case I (Table I) there was an increase in the error for fixed hc and for increased

ratio of hc/hf. Similar results were reported in Reference [14] for a slightly different problem.
An approximation to the composite residual was used in computing the right-hand-side of
the coarse grid problem in Step 1 of the FAC algorithm. Injection is used to restrict the
composite residual to the coarse grid and constant interpolation is used in computing the
composite grid residual. There are several methods for improving the accuracy results: more
careful treatment of the composite residuals and use of multilevel local refinement, keeping
the ratio of coarse-to-fine levels small.

5.2. Test case II

In this test problem we solve for the pressure equation (1). The computational region is
again V= [0, 1]2 and the refined region is VRW as defined above in Equation (53). Water is
injected in the lower left corner of V, i.e. at (0, 0), and oil is produced in the upper right
corner, i.e. at (1, 1).

The capillary pressure Pc(Sw) is taken to be zero, and the rock porosity f=0.2, (porosity
is a measure of the pore space and hence the fluid capacity of the medium). The pressures Po

and Pw, o and w denoting oil and water respectively, in any two phases at any point in the
porous medium, are assumed to be related to each other via the capillary pressure Pc, see,
e.g. Reference [27] for a discussion of these concepts. The oil and water viscosities are 1.0

Table I. Accuracy results for test case I: constant interpolation

e0hc/hfHc N

1/8 1 2.0–3 64
8821/8 9.2–4

18441/8 1.1–3
5681.1–381/8

1/16 1 3.4–4 256
3522.7–421/16

1/16 4 2.9–4 736
21041/16 8 2.9–4

1/32 1 1.2–4 1024
14087.2–521/32

7.4–54 29441/32
1/32 8 7.5–5 9088
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Table II. Relative permeabilities for water and oil as functions of water
saturation

Sw Relative permeability

krw
kro

0.0000.200 0.3380
0.265 0.002 0.2464
0.330 0.008 0.1730

0.018 0.11590.395
0.032 0.07300.460

0.04220.0500.525
0.590 0.080 0.0216
0.655 0.098 0.0091

0.00270.1280.720
0.785 0.162 0.0003

0.00000.2000.850

and 0.31 cp, respectively. The time steps where initially 0.1 days, and water injection rates
at 244 ft3 day−1; production rates are the same. The oil compressibility was fixed at
1.47×10−5 psi−1 and water compressibility was set to zero. The saturation dependent
values shown in Table II (relative permeabilities as functions of water saturation) are used
in the simulations.

Homogeneous permeability values, Kx=100 mD and Ky=100 mD are used. The aver-
age reduction factors as defined in Equation (51) are tabulated, where r0 is the result of
using the simplest interpolation operator in Step 2 of algorithm, and r1 is the result of
using linear interpolation. Slightly better convergence rates are obtained using linear inter-
polation versus constant interpolation. The extra computational effort involved in using
linear interpolation is only marginal compared with the use of the constant interpolation
method as described in Section 2.2. The exact analytical solution to test case II is not
known, therefore, iterative convergence rates are included in Table III (based on residuals,
see Equation (51)). The use of linear interpolation is more accurate than using constant
interpolation at fictitious points, as shown in Reference [15].

Table III. Iterative convergence rates for test case II

Nhc hc/hf r1 r0

1.0–2 881/8 2 6.7–3
1.1–2 2.6–2 18441/8

1/8 8 1.8–2 4.1–2 568

1/16 3522 9.3–3 1.1–2
1/16 7364 8.6–3 2.6–2

21044.2–21/16 1.2–28

14081/32 2 9.7–3 1.1–2
29442.6–21.1–21/32 4

4.2–21.7–28 90881/32
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6. CONCLUSIONS

The use of a local refinement scheme based upon a variational acceleration technique proposed
in Reference [9] was investigated. It was shown that the scheme is equivalent to the FAC
method of McCormick and Thomas [10]. The scheme is also equivalent to the ACM method
[17] on uniform grids. The scheme was applied to some simple problems where a fixed refined
patch was put around wells. The results obtained showed that the scheme can be effective
when higher resolution is needed in some areas more than others, such as around wells in
numerical reservoir simulation. In order to fully utilize the potential of the scheme in e.g.
numerical reservoir simulation, multilevel refinement must be employed. Although the numer-
ical examples presented here are taken from numerical reservoir simulation, the techniques
presented in this paper apply equally to different problems.
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